当前位置:壹学网>试题>数学试题>《分数应用题一》数学教案

《分数应用题一》数学教案

时间:2023-11-20 10:20:12 数学试题 我要投稿
  • 相关推荐

《分数应用题一》数学教案

  作为一名辛苦耕耘的教育工作者,时常需要用到教案,教案是教学活动的依据,有着重要的地位。来参考自己需要的教案吧!以下是小编精心整理的《分数应用题一》数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《分数应用题一》数学教案

《分数应用题一》数学教案1

  教学目标:

  1、使学生学会用方程方法和算术方法解答两步计算的分数一般应用题。

  2、培养学生分析、解答两步计算的分数应用题的能力和知识迁移的能力。

  3、培养学生的推理能力。

  教学重点:

  培养学生分析、解答两步计算的分数应用题的能力

  教学难点:

  使学生正确地解答两步计算的分数一般应用题。

  教学过程:

  一、复习引新

  (一)全体学生列式解答,再说一说列式的依据。两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?13÷2-5=6.5-5=1.5(千米)

  根据:路程÷相遇时间-甲速度=乙速度

  (二)教师提问:谁来说一说相遇问题的三量关系?速度和×相遇时间=总路程总路程÷相遇时间=速度和总路程÷速度和=相遇时间

  (三)引新刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为小时)

  二、讲授新课

  (一)教学例1例1。

  两地相距13千米,甲乙二人从两地同时出发相向而行,经过小时相遇。甲每小时行5千米,乙每小时行多少千米?

  1、读题,分析数量关系。

  2、学生尝试解答。

  方法一:解:设乙每小时行千米。方法二:(千米)

  3、质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?相同:解题思路和解题方法相同;不同:数据不同,由整数变成分数。

  4、练习甲、乙两车同时从相距90千米的两地相对开出,小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?

  (二)教学例2例2。

  一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的,这批水果有多少千克?

  1、学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系。由此得出:一批水果的重量第一次+第二次

  2、列式解答方法一:解:设这批水果有千克方法二

  3、以组为单位说一说解题的思路和依据。

  4、练习六年级一班有男生23人,女生22人,全班学生占六年级学生总数的。六年级有学生多少人?

  三、巩固练习

  (一)写出下列各题的等量关系式并列出算式

  1、甲、乙两车同时从相距184千米的两地相对开出,小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?

  2、打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的。这部书稿有多少页?

  (二)选择适当的方法计算下面各题

  1、一根长绳,第一次截去它的,第二次截去米,还剩7米,这根绳子长多少米?

  2、甲、乙二人分别从相距22千米的'两地同时相对走出,甲每小时行3千米,乙每小时行千米,两人多少小时后相遇?

  四、课堂小结

  今天我们学习的分数应用题和以前所学的知识有什么联系?有什么区别?

  五、课后作业

  1、商店运来苹果4吨,比运来的橘子的2倍少吨。运来橘子多少吨?

  2、一套西装160元,其中裤子的价格是上衣的。上衣和裤子的价格各是多少元?

《分数应用题一》数学教案2

  重点:

  1.理解和掌握求一个数的几分之几是多少的分数应用题的结构和解题方法。

  2.渗透对应思想。

  难点:

  1.理解这类应用题的解题方法。

  2.用线段图表示分数应用题的数量关系。

  教学过程:

  一、复习、质疑、引新

  1.说出、、米的意义。

  2.列式计算:

  20的是多少?6的是多少?

  学生完成后,可请同学说一说这两个题为什么用乘法计算?

  3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(祟课题、分数应用题)

  二、探索、质疑、悟理

  1.出示例1(也可以结合学生的实际自编)

  学校买来100千克白菜,吃了,吃了多少千克?

  ①读题。理解题意,知道题中已知条件和所求问题;搞清数量间的关系。

  ②分析。重点分析哪句话呢?吃了这句话是分率句。是什么意思呢?(就是把100千克白菜平均分成5份,吃了这样的.4份)。

  ③画图:(课件一演示)补:把100千克当做什么?(单位1)

  画图说明:

  a.量在下,率在上,先画单位1

  b.十份以里分份,十份以上画示意图。

  C.画图用尺子,用铅笔。

  ④尝试。根据同学们对题目的理解,利用已有的旧知识,让学生独立思考,试着列式解答。也可以同桌讨论,互相启发。

  学生可能会出现下面解答方法:

  解法一:用自己学过的整数乘法做

  (千克)

  解法二:(千克)

  在充分研究基础上,教师可将两种解法分别写在黑板上,并请同学讲出算理和思路。解法一是根据分数意义,把100平均分成5份,吃了这样的4份,所以先求1份,用除法,再求几份,用乘法,是以前学过的归一问题。解法二是根据分数乘法的意义,吃了,是吃了100千克的,所以把100千克看作单位1,要求吃了多少,就是求100的是多少,根据一个数乘以分数的意义,所以用乘法计算。

  ⑤小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答。

  2.巩固练习

  六年级一班有学生44人,参加合唱队的占全班学生的,参加合唱队有多少人?

  订正时候强调1)把哪个数量看作单位1?

  2)为什么用乘法计算?

  3.学习例2

  例2小林身高米,小强身高是小林的,小强身高多少米?

  在学习例1的基础上,可以让学生审题后,试着画线段图表示数量关系。

  (课件二演示)

  先画单位1

  再画单位1的几分之几

  画图时注意与例1的区别。(例1是部分与整体的关系,画一条线段表示数量关系数,例2是甲乙两类关系,画两条线段表示数量关系为好。)

  在学生分析比较数量关系的基础上,请同学指出问题就是求米的是多少?

  列式:(米)

  答:小强身高米。

  4.改变例2

  改变例2的条件和问题成为下题(可让学生完成)。

  小强身高米,小林身高是小强的倍,小林身高多少米?

  改编后,可让学生独立画图完成。

  (米)

  三、归纳、总结

  1.今天所学题目为什么用乘法计算

  2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?(都是已知一个数(即单位1)是多少,还知道它的几分之几(分率),求它的几分之几是多少。从分率可入手分析)

  四、训练、深化

  1.先分析数量关系,再列式解答

  ①一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?

  ②一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?

  2.提高题

  ①一桶油400千克,用去,用去多少千克?还剩多少千克?

  ②一桶油400千克,用去吨,用去多少千克?还剩多少千克?

  五、课后作业:练习五1、2、3

  六、板书设计:

  分数乘法应用题

  100==80(千克)

  答:吃了80千克。

  (米)

  答:小强身高是米。

《分数应用题一》数学教案3

  教学内容:

  义务教育课程标准试验教科书青岛版小学数学六年级上册第7378页。

  教材简析:

  教材在学生已经掌握了求一个数的几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。

  教学目标:

  1.知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。

  2.能力目标:通过让学生说一说、画一画,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。

  3.情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。

  教学过程:

  一、创设情境,谈话导入。

  谈话:同学们,2008年的奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?

  [设计意图]这一单元是围绕中国的世界遗产这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。

  二、自主探究,获取新知。

  1.课件出示教科书73页情境

  谈话:这里有一些我国世界遗产的'文字信息,谁能读一读?根据文字信息你能提出什么数学问题?

  (1)北京故宫的占地面积大约是多少公顷?

  (2)我国的世界文化遗产和自然遗产一共有多少处?

  (3)我国的世界文化遗产比自然遗产多多少处?

  (4)同学们提出了这么多问题,我们先来解决北京故宫的占地面积大约是多少公顷?好吗?

  2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?

  [设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的数学思想方法,为新问题的解决做好铺垫。

  3.选择你喜欢的方法试着独立解决这一问题好吗?

  4.学生汇报交流。

  让学生到前面展示不同的方法,分别说说自己的解题思路。

  (1)2721/4=68(公顷) 68+4=72(公顷)

  (2)2721/4+4

  =68+4

  =72(公顷)

  学生在多次交流解题步骤中,教师板书数量关系

  天坛公园的面积1/4+比天坛公园多的面积=故宫的面积

  并展示学生画的线段图。让学生分析线段图。

  [设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。

  5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的我国的世界文化遗产和自然遗产一共有多少处?吗?

  学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位1?)

  全班交流,展示做题方法。

  (1)307/10+302/15(2)30(7/10+2/15

  =21+4 =3025/30

  =25(处) =25(处)

  6.让学生展示线段图的画法,说清解题思路。

  7.点题并板书:分数应用题。

  8.单看这两个算式的计算,你能想到什么运算律?有什么启发?

  9.小结:乘法的分配律在分数中同样适用。

  [设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。

《分数应用题一》数学教案4

  教学内容

  教科书第112页例1、第113页例2及“做一做”中的题目,完成练习二十九的第1~4题.

  教学目的

  使学生在学过的百分数的意义和分数应用题的基础上,能够正确地解答求一个数是另一个数的百分之几的应用题.

  教具准备

  将复习中的第1题图画在小黑板上,第2题写在黑板上.

  教学过程

  一、复习

  1.看图,回答下面的问题.

  (1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

  (2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

  先让学生想一想,然后,再指定学生回答.

  2.五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的`有120人,占五年级学生人数的几分之几?

  出示上面的复习题后,先让学生在练习本上做,同时,请3名学生在黑板上每人做一题.

  核对第2题时,教师可以说明:这道题是求五年级学生中已达到国家体育锻炼标准的人数占五年级全体学生人数的几分之几.

  然后提问:

  “解答这样的题目关键是什么?”

  “关键是应该以谁作单位‘1’?”

  “用什么方法计算?怎样列式?”

  教师:这是我们过去学过的分数应用题.百分数的应用题跟分数应用题类似.下面我们就来学习百分数应用题.板书课题:百分数的一般应用题(一).

  二、新课

  1.教学例1.

  出示例1:“五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的百分之几?”

  请学生读题,提问:

  “这道题和上面复习中的第2题有什么不同?”

  “解答这道题应该以谁作单位‘1’?用什么方法计算?怎样列式?”学生口述,教师板书:120÷160=0.75=75%

  教师:这道题和上面复习中的第2题相比,题目的条件完全相同,只是问题不同.因为这道题的问题是求占五年级学生人数的百分之几,所以要把结果化成百分数.

  2.出示练习题:“一班种树40棵,二班种树48棵,二班种树的棵数占一班的百分之几?”先让学生想一想,再提问:

  “这道题怎样列式?”

  让学生讨论一下.

  学生讨论后,教师说明:解答这样的题目,必须看清求的是什么,弄清以谁作单位“1”?把数量关系弄清楚了,才能确定怎样列式.

  3.教学例2.

  教师:百分数在日常生活和生产中的应用非常广泛.比如在农业生产中,要实行科学种田,播种前需要进行种子发芽试验,然后根据发芽的种子数占试验种子总数的百分之几,决定单位面积的播种量.这样既能确保基本苗的数量,又可以避免浪费种子.通常把“发芽的种子数占试验种子总数的百分之几叫做发芽率”(口述后再板书发芽率的概念).求发芽率是百分数在农业生产上的一种重要应用.

  口述并板书发芽率计算公式:

  发芽率=×100%

  教师指着公式中的百分号说明:在这个公式中为什么要乘100%呢?因为发芽率是指发芽的种子数占试验种子总数的百分之几,如果公式只写成,不加“×100%”,一般来讲,这只是分数形式,除得的商是小数,而不是百分数.如果在的后面加上“×100%”,相当于乘1,这样就可以使除得的结果化成大小不变的百分数了.所以在计算发芽率的公式中必须加上“×100%”.我们在这以后还要学习像出粉率、合格率、出勤率等等,这些也要用百分数表示,所以它们的计算公式也必须加上“×100%”.

《分数应用题一》数学教案5

  求一个数比另一个数多或少百分之几的应用题是求一个数是另一个数的百分之几问题的发展,是在求一个数比另一个数多(或少)几分之几的基础上教学的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件题目中没有直接给出,需要根据题里的条件先算出来。解答求一个数多(少)百分之几的问题,可以加深学生对百分数的认识,提高用百分数解决实际问题的能力。

  教学内容

  教科书第116页例3,完成“做一做”中的题目及练习三十的第1~4题。

  教学目的

  在解答求一个数是另一数的百分之几的应用题及分数应用题的基础上,通过迁移类推,使学生掌握求一个数比另一个数多(或少)百分之几的应用题,提高学生分析解答应用题的能力。

  教学过程

  一、复习

  1、把下面各数化成百分数。

  0.63,1.08,7,0.044

  2、解答下面的应用题,并导入新课。

  “一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?”

  学生独立在练习本上列式解答,订正时教师板书下面的线段图和算式:

  14÷12=116.7%

  提问:为什么这样列式?

  要求学生分析出从问题“实际造林是原计划的百分之几”可以看出是求实际造林数与计划造林数的比,要以原计划造林的公顷数(12公顷)作为单位“1”,求14是12的百分之几,用除法计算。

  提问:从题目看,原计划造林多还是实际造林多?如果把这道题的问题改为“实际造林比原计划多百分之几”该怎样解答呢?

  教师将复习题问题改变后成为例3。

  二、新课

  1。帮助学生理解题意。

  (1)指名学生读题。

  (2)提问:例3的问题与复习题有什么不同?

  你怎样理解“实际造林比原计划多百分之几”这句话?

  (引导学生利用黑板上的线段图说明,求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数占原计划的百分之几。)

  (3)在学生回答的同时,教师完成下面线段图。

  (4)启发学生想,“实际造林比原计划多的公顷数占原计划的百分之几”是哪两个量在比较?谁是单位“1”?

  2、讨论算法并列出算式。

  提问:根据以上分析,要求出“实际造林比原计划多的公顷数”占“原计划的百分之几”必须先算什么?再算什么?

  列式:(14-12)÷12

  让学生计算出结果,教师板书并写出答案。

  3、想一想,这道题还有其他解法吗?

  引导学生思考,把原计划造林看作百分之百,实际造林是原计划的116.7%,两个百分数之差就是实际造林比原计划多的百分数。

  学生列式,教师板书:

  14÷12×100%-100%

  4、将例3中的问题改成“原计划造林比实际造林少百分之几”该怎样解答呢?

  (1)提问:从问题看,哪两个量在比较?把谁看作单位“1”?解答时,先求什么?再求什么?

  (引导学生回答是原计划造林比实际造林少的公顷数和实际造林数比较,要以实际造林作为单位“1”。必须先求出原计划造林比实际造林少的公顷数,才能求出原计划造林比实际少的百分之几。)

  (2)学生列式,教师板书:

  (14-12)÷14

  如果有学生列出14÷14-12÷14也是允许的。

  (3)观察比较:

  将例3的`第一种列式及改变问题后的第一种列式进行比较。不同点在什么地方?为什么除数不一样?

  通过学生的讨论,再次强调两题中和谁比的标准不同,单位“1”就会发生变化。解答这种题时,仍然要注意找准单位“1”。

  5、引导学生观察例3的问题及变化后的问题,提问:“谁能概括说明今天我们学习的是什么新知识?”

  学生回答后,教师板书课题:求一个数比另一个数多(或少)百分之几的应用题。

  三、巩固练习

  1、提问:

  求一个数比另一个数多(或少)百分之几的应用题的解题方法是什么?(即先求什么,再求什么。)

  解答此类应用题必须注意什么?(找准单位“1”、)

  2、独立解答第30页“做一做”的题目。

  订正时要求学生说出:先求十月份比九月份节约用水的吨数,再求节约的吨数占九月份的百分之几。九月份用水吨数为单位“1”,作除数。学生口述算式,教师板书:(800-700)÷800。

  教师提出,如果求九月份用水比十月份多百分之几,该怎样列式?学生列式,教师板书:(800-700)÷700。然后教师再次强调问题不同,单位“1”有所变化,必须要仔细审题,弄清数量关系。

  四、课堂练习

  1、学生做练习三十的第1题。集体订正时要提问算法。

  2、学生在书上做练习三十的第3题,要求先在练习本上列式计算,再将结果填在表中。教师要注意行间巡视,看看学生是否掌握了今天所学的解题方法,发现问题,及时纠正。

  五、作业

  练习三十的第2、4题。

【《分数应用题一》数学教案】相关文章:

分数应用题教案12-01

分数应用题说课稿08-04

《分数应用题》教学反思01-04

分数除法应用题的教案06-18

分数应用题教学设计12-16

《分数应用题复习》教案12-04

《分数除法应用题》教学反思01-09

分数乘法应用题的教学反思01-07

分数除法应用题教学反思06-23

分数应用题教案(精选15篇)12-03