列方程解应用题数学教案
在教学工作者实际的教学活动中,常常要根据教学需要编写教案,教案是备课向课堂教学转化的关节点。写教案需要注意哪些格式呢?下面是小编为大家整理的列方程解应用题数学教案,欢迎阅读与收藏。
列方程解应用题数学教案1
一、教学内容:
原通用教材六年制小学数学课本第十册第24页例7。
二、教学目的:
使学生初步学会列方程解稍复杂的应用题,加深学生对数量关系和解题方法的理解,培养思维的灵活性。
三、教学过程:
(一)复习
1.说一说用方程解应用题的一般步骤。其中哪一步最重要?
2.解方程
45×8+10x=820 10x—45×8=100
8x+33x=820(x+45)×8=820
(二)新课
师:前面我们已经学过用方程解应用题。解题时根据题意,先把题中数量间的相等关系找出来,再列方程。这一步非常重要。这节课我们继续学习用方程解稍复杂的应用题。[板书:列方程解稍复杂的应用题]
师:出示例7。
商店运来8筐苹果和10筐梨,一共重820千克。每筐苹果重45千克,每筐梨重多少千克?
师:边看题边想想。这道题的意思是什么?有哪些已知条件?要求的问题是什么?按照列方程解应用题的一般步骤,第一步你准备做哪件事?
生:题中告诉我们商店运来两种水果,一种是苹果,一种是梨。已知条件是运来8筐苹果和10筐梨,两种水果一共重820千克,每筐苹果重45千克。要求的问题是每筐梨重多少千克?我第一步准备设每筐梨重x千克。这样把问题变成了条件。
师:真能干。其他同学都会这样想吗?[板书:设每筐梨重x千克]当我们用x表示题里的未知数以后,就把问题转化成了条件。下面请同学们把“每筐梨重x千克”当作条件和题中原有的条件放在一起,找一找数量间的相等关系。大家可以议论议论。
师:谁能告诉大家,你根据题意,找出了哪两个数量间的相等关系?
生:我找的是8筐苹果的重量加上10筐梨的重量正好等于两种水果的总重量820千克。
师:还找出了其他相等关系吗?
生:我找的相等关系是从两种水果的总量里减去10筐梨的重量就刚好是8筐苹果的重量。
生:我想的是从两种水果的总重量820千克里减去8筐苹果的重量就等于10筐梨的重量了。
师:好了。刚才已有三位同学代表大家找出了题中数量间不同的相等关系。这些关系不仅找得正确,而且都注意了先用这个“每筐梨重x千克”[指板书]去和题里原有的条件合在一起,再找出数量间的相等关系。这样考虑问题的方法很好。可以怎样列方程?这样好不好,因为要想发言的同学太多。所以请一位同学代表大家的意见列出一个方程后,再请另一位同学简要地说出所列方程是不是正确,为什么?谁先说?
生:可以这样列方程45×8+10x=820。[板书]
师:有多少同学会列出这个[指板书]方程?[全班都会]太好了。这个方程对吗?为什么?可别把手放下去了。
生:这个方程是正确的。因为方程的左边这个含字母的式子表示两种水果的总重量,方程右边的820千克也是两种水果的总重量。所以,根据总重量等于总重量的关系列出的这个方程是正确的。
师:说得真不错。谁能再说说,为什么方程的左边这个含字母的式子是表示两种水果的总重量?[有意请一位差生作答]
生:因为45千克是每筐苹果的重量,8是苹果的筐数。[教师用教鞭指45×8]45×8是表示苹果的总重量。x表示每筐梨的'重量,10表示梨的筐数。10x表示梨的总重量。
45×8+10x这个含字母的式子表示苹果和梨一共的重量。
师:真能干,请坐。请全班同学在作业本上用方程解答这道题。解答后请翻开课本第24页和书上的解答对照一下,看看自己的解答与书上的解答是不是相同。[巡视并有意请一位差生在黑板上解答]
师:怎么,都解答完了。检查过了吗?和解答一样的有哪些同学?[学生举手示意]谁来说说你是如何检查的?
生:把方程的解代入原方程左边,360+460等于820,方程的右边也等于820,所以x=46是原方程的解。
师:检查的过程虽然不要求写出来,但我们要养成检查的习惯,检查后再写出答案。
师:还有不同意见吗?[因有学生举手]
生:我列的方程和书上的不一样。我根据苹果的重量等于苹果的重量的相等关系列的。820—10x=45×8,方程的解还是46。[板书这个方程]
师:非常好。能根据不同的相等关系列出不同的方程,但方程的解却是相同的。很会动脑筋。还可以怎样列方程?
生:我列的方程是820—45×8=10x。相等关系是梨的重量同梨的重量相等。
师:这个方程对吗?
生:我觉得不完全对。解方程不好写。
生:这个方程是对的。因为相等关系找对了。
师:[举手同学多还想发表意见]这样,老师说说看法。应该说这个方程是正确的。因为它是根据梨的重量等于梨的重量的相等关系列出的方程。只不过我们习惯的写法是把含字母的式子写在等式的左边。如果列出了这样的方程只需要把等式左右两边调换一下,就便于我们解方程了。
师:[小结]这节课我们学了列方程解稍复杂的应用题。下面让我们一起根据大家在解题中的思考过程,再来总结一下解题的思路。想想看,在解题过程中你自己先怎样,再怎样?然后怎样?最后怎样?谁能结合自己刚才解题中的思考过程一步接一步地说出来。
生:第一步是读题后把问题转化成条件;第二步是把转化来的条件拿来和题中原有的条件放在一起;第三步找数量和数量间的相等关系;第四步是根据相等关系列方程;第五步是解方程;最后一步是检查和写出答案。
师:谁能把××同学总结的思路再说一遍?[有意请中差生回答]
列方程解应用题数学教案2
教学目标:
1、 使学生会列一元一次方程解有关应用题。
2、 培养学生分析解决实际问题的能力。
复习引入:
1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:
(1)__________ (2)_________ (3)_________
人们常规定工程问题中的工作总量为______。
2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的工作效率是_______。
讲授新课:
1、例题讲解:
一件工作,甲单独做20小时完成,乙单独做12小时完成。
问:甲乙合做,需几小时完成这件工作?
(1)首先由一名至两名学生阅读题目。
(2)引导
Ⅰ:这道题目的已知条件是什么?
Ⅱ:这道题目要求什么问题?
Ⅲ:这道题目的相等关系是什么?
(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。
2、练习:
有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?
此题的处理方法:
Ⅰ:先由一名学生阅读题目;
Ⅱ:然后由两名学生板演;
3、变式练习:
丙管改为排水管,且单独开丙管18分钟可把满池的水放完,问三管齐开,几分钟可注满空水池?要求学生口头列出方程。
4、继续讲解例题
一件工作,甲单独做20小时完成,乙单独做12小时完成。
若甲先单独做4小时,剩下的部分由甲、乙合做,问:还需几小时完成?
(1) 先由学生阅读题目
(2) 引导:
Ⅰ:这道题目的已知条件是什么?
Ⅱ:这道题目要求什么问题?
Ⅲ:这道题目的相等关系是什么?
(3) 由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。
5、练习:
(1)一件工作,甲单独做20小时完成,乙单独做12小时完成。
若乙先做2小时,然后由甲、乙合做,问还需几小时完成?
(2)一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成?
以上两题的处理方法:
Ⅰ:先由两名学生阅读题目;
Ⅱ:然后由两名学生板演;
Ⅲ:其他学生任选一题完成。
Ⅴ:评讲后对第一题提出:这项工程共需几天完成?
Ⅵ:第一题还可根据什么等量关系列出方程呢?根据此相等关系列出方程(学生口答)。
6、编应用题:
(1) 根据方程:3/12+x/12+x/6=1,编应用题。
(2) 事由:打一份稿件。
条件:现在甲、乙两名打字员,若甲单独打这份稿件需6小时打完,若乙单独打这份稿件需12小时打完。
要求:甲、乙两名打字员都要参与打字,并且要打完这份稿件。
处理方法:由学生编出应用题,并设出未知数,列出方程。
课堂总结:工程问题中的三个量的关系。
课堂作业:见作业本
选做题:一件工作,甲单独做6小时完成,乙单独做12小时完成,丙单独做18小时完成,若先由甲、乙合做3小时,然后由乙丙合做,问共需几小时完成?
【列方程解应用题数学教案】相关文章:
列分式方程解应用题的步骤04-17
列分式方程解应用题教学反思03-30
列一元二次方程解应用题教案12-28
列一元一次方程解应用题技巧04-16
《列方程解应用题》10-27
《列一元一次方程解应用题》教学反思09-29
列一元二次方程解应用题评课稿11-03
《列方程解应用题》教案12-12
《列方程解应用题》说课稿09-23
《列一元一次方程解应用题》教学反思2篇04-02